LR will determine the discrepancy and update the PGNCS. The guidance then tries to steer down rapidly to achieve the targets. As a result of the rapid changes, altitude rates may increase to an unsafe level for aborting the descent. That is, should an abort be required, the altitude rates could not be nulled by the ascent engine in time to prevent surface collision. The Δh limits necessary to avoid these rates are shown in figure 18. Notice that over the estimated 3σ region of LR initial updating (which at the time of that analysis was centered at an altitude of only 35,600 feet instead of 39,000 feet), the Δh limits are much greater than the $+3\sigma$ navigation estimates of Δh. However, the flight controllers, as well as the crew, monitor Δh to assure that the boundary is not exceeded before incorporation of the LR altitude updating. If the boundary is exceeded, then the data are not incorporated, and an abort is called. When the LM is actually lower than estimated, no excessive rates are encountered upon LR updating. It is necessary only that the LM altitude and altitude rate be above the abort limits, defined in the section entitled "Trajectory Limits."

During the Apollo 11 mission, the LR acquired lock-on to the lunar surface during the rotation to face-up attitude at an altitude of 37,000 feet. The Δh was -2200 feet, indicating that the LM was actually low. This small amount of Δh can readily be attributed to terrain variations. Because no limits were violated, the data were incorporated after a short period of monitoring at an altitude of 31,600 feet. The Δh readily converged to a small value of 100 feet within 30 seconds. The LR velocity updates were incorporated nominally, beginning at a 29,000-foot altitude. As expected, LR signal dropouts were encountered at low altitudes (below 500 feet) but presented no problem. When the velocity becomes small along the LR beams, depending on the attitude and approach velocity, zero Doppler shift is encountered; hence, no signal occurs.

Trajectory limits. - During real time, trajectory limits are monitored for flight safety. The prime criterion for flight safety is the ability to abort the descent at any time until the final decision to commit to touchdown. Thus, flight dynamics limits are placed on altitude and altitude rate, as shown in figure 19. Notice that the nominal trajectory design does not approach the limits until late in the descent, after the crew has had ample time for visual assessment of the situation. The limits shown are based on APS abort with a 4-second free fall for crew action delay or on DPS abort with a 20-second communications delay for ground notification. The flight controllers and the crew monitor altitude and altitude rate, but because of communication delays with the ground, the flight controllers only advise, based on projected trends. The Apollo 11 altitude and altitude-rate profile shown in figure 19 was near nominal.
Crew visual assessment. - As stated previously, the approach and landing phases have been designed to provide crew visibility of the landing area. This provision allows the crew to assess the acceptability of the landing area, to decide to continue toward the landing area, or to redesignate a landing away from it with LPD or manual control. During the Apollo 11 mission, because of the initial navigation errors, the descent was guided into the generally rough area surrounding West Crater (fig. 20 and the section entitled "The PGNCS Monitoring"). West Crater is inside the premission mapped area, approximately 3 nautical miles west of center. Unfortunately, because of the guidance program alarms, the commander was unable to concentrate on the window view until late in the descent (near low gate).

Thus, crew visual assessment during the approach phase was minimal, which resulted in continued approach into the West Crater area. This problem is discussed further in the subsequent section entitled "Postflight Analysis."

Ascent

During the real-time situation, the crew and flight controllers continually monitor the LM systems and trajectory for detection of off-nominal performance. Of primary concern is the performance of the APS and the PGNCS. The APS must perform because no backup propulsion system is provided. Should the APS fail during the final 30 seconds of ascent, the RCS can complete the insertion. The PGNCS performance is monitored by the AGS and powered-flight processor, using MSFN tracking in the same manner as in the descent-guidance monitoring. The limit lines are set for completion of the ascent on the AGS should the PGNCS performance degrade.
In real time, the PGNCS and AGS performance was excellent, and guidance switchover was not required. The APS performance was also excellent. Insertion occurred at 7 minutes 15 seconds from lift-off, with 7 minutes 18 seconds being the operational trajectory prediction.

POSTFLIGHT ANALYSIS

A postflight analysis is conducted to determine how the actual flight performance compared with the premission planning. The purpose of a postflight analysis is to determine if the premission planning was adequate and, if it is not, to determine the changes required for subsequent flights. A brief description of the Apollo 11 postflight results for LM descent and ascent, application of these results to the Apollo 12 planning, and a preliminary postflight analysis of the Apollo 12 mission are given.

Apollo 11 Descent

The DOI maneuver was performed nominally, as discussed in the preceding section. The events during powered descent are tabulated in table IV. The braking phase events were near nominal (table I). Rotation to a windows-up attitude was delayed slightly because of the selection of a slow rotational rate by the crew. This delay resulted in the slight delay in LR acquisition, which took place prior to completion of the rotation. The approach phase, as shown in figure 21, also was consistent with premission planning. As shown previously (fig. 20), the descent headed into the area near West Crater because of an initial navigation error, approximately 3 nautical miles down range. During the approach phase, the LPD indicated to the commander that the automatic system was guiding to a landing up range of West Crater. Later on, the landing appeared to be heading into the rock field just beyond West Crater. This uncertainty was caused by several factors: the time rate of change in LPD angle, errors introduced by terrain variations (primarily slope), and the lack of time for visual assessment because of crew diversion to guidance-program alarms. (Refer to the section entitled "Real-Time Analysis.") Therefore, not until the beginning of the landing phase did the commander try to avoid the large area of rough terrain by assuming manual control (P66 guidance) at an altitude of 410 feet when the forward velocity was only 50 fps. An LPD input was made, as shown in table IV; but in discussions with the crew, it was determined that this input was inadvertent. The landing phase is illustrated in figure 22, and the ground track is shown in figure 23. The landing site is shown to have been moved, through manual maneuvering, approximately 1100 feet down range and 400 feet cross range from where the automatic guided descent (under P64 and P66 control) would have landed. The attitude and altitude-rate profile are shown in figures 24 and 25, respectively. The somewhat erratic behavior of these profiles can be best explained by Commander Neil A. Armstrong's comments to the Society of Experimental Test Pilots meeting in Los Angeles on September 26, 1969. "I [was] just absolutely adamant about my God-given right to be wishy-washy about where I was going to land."
TABLE IV. - APOLLO 11 LUNAR-DESCENT EVENT TIMES

<table>
<thead>
<tr>
<th>g.e.t. a/hr:min:sec</th>
<th>Event</th>
<th>g.e.t. hr:min:sec</th>
</tr>
</thead>
<tbody>
<tr>
<td>102:17:17</td>
<td>Acquisition of data</td>
<td>102:17:17</td>
</tr>
<tr>
<td>102:20:53</td>
<td>LR on</td>
<td>102:20:53</td>
</tr>
<tr>
<td>102:24:40</td>
<td>Alignment of abort guidance to primary guidance</td>
<td>102:24:40</td>
</tr>
<tr>
<td>102:27:32</td>
<td>Yaw maneuver to obtain improved communications</td>
<td>102:27:32</td>
</tr>
<tr>
<td>102:32:55</td>
<td>Altitude of 50 000 feet</td>
<td>102:32:55</td>
</tr>
<tr>
<td>102:32:58</td>
<td>Propellant-setting firing start</td>
<td>102:32:58</td>
</tr>
<tr>
<td>102:33:05</td>
<td>Descent-engine ignition</td>
<td>102:33:05</td>
</tr>
<tr>
<td>102:33:31</td>
<td>Fixed throttle position (crew report)</td>
<td>102:33:31</td>
</tr>
<tr>
<td>102:36:57</td>
<td>Face-up yaw maneuver in process</td>
<td>102:36:57</td>
</tr>
<tr>
<td>102:37:51</td>
<td>LR data good</td>
<td>102:37:51</td>
</tr>
<tr>
<td>102:37:59</td>
<td>Face-up maneuver complete</td>
<td>102:37:59</td>
</tr>
<tr>
<td>102:38:22</td>
<td>1020 alarm (computer determined)</td>
<td>102:38:22</td>
</tr>
<tr>
<td>102:38:45</td>
<td>Enabling of radar updates</td>
<td>102:38:45</td>
</tr>
<tr>
<td>102:38:50</td>
<td>Altitude less than 30 000 ft (inhibit X-axis override)</td>
<td>102:38:50</td>
</tr>
<tr>
<td>102:38:50</td>
<td>Velocity less than 2000 fps (start LR velocity update)</td>
<td>102:38:50</td>
</tr>
<tr>
<td>102:39:02</td>
<td>1202 alarm</td>
<td>102:39:02</td>
</tr>
<tr>
<td>102:41:32</td>
<td>Program 64 entered</td>
<td>102:41:32</td>
</tr>
<tr>
<td>102:41:37</td>
<td>LR antenna to position 2</td>
<td>102:41:37</td>
</tr>
<tr>
<td>102:41:53</td>
<td>Attitude hold (handling qualities check)</td>
<td>102:41:53</td>
</tr>
<tr>
<td>102:42:03</td>
<td>Automatic guidance</td>
<td>102:42:03</td>
</tr>
</tbody>
</table>

a Ground elapsed time.
TABLE IV. - APOLLO 11 LUNAR-DESCENT EVENT TIMES - Concluded

<table>
<thead>
<tr>
<th>g.e.t. a</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>102: 42: 18</td>
<td>1201 alarm (computer determined)</td>
</tr>
<tr>
<td>102: 42: 19</td>
<td>LR low scale (less than 2500 ft)</td>
</tr>
<tr>
<td>102: 42: 43</td>
<td>1202 alarm (computer determined)</td>
</tr>
<tr>
<td>102: 42: 58</td>
<td>1202 alarm (computer determined)</td>
</tr>
<tr>
<td>102: 43: 09</td>
<td>Landing point redesignation</td>
</tr>
<tr>
<td>102: 43: 13</td>
<td>Attitude hold</td>
</tr>
<tr>
<td>102: 43: 20</td>
<td>Update of abort guidance altitude</td>
</tr>
<tr>
<td>102: 43: 22</td>
<td>Program 66 entered</td>
</tr>
<tr>
<td>102: 44: 11</td>
<td>LR data not good</td>
</tr>
<tr>
<td>102: 44: 21</td>
<td>LR data good</td>
</tr>
<tr>
<td>102: 44: 28</td>
<td>Propellant low-level sensor light on</td>
</tr>
<tr>
<td>102: 45: 03</td>
<td>LR data not good</td>
</tr>
<tr>
<td>102: 45: 09</td>
<td>LR data good</td>
</tr>
<tr>
<td>102: 45: 40</td>
<td>Landing</td>
</tr>
<tr>
<td>102: 45: 40</td>
<td>Engine off</td>
</tr>
</tbody>
</table>

a Ground elapsed time.

Figure 21. - Apollo 11 approach phase.

Figure 22. - Apollo 11 landing phase.
The propellant situation during the landing phase is summarized in figure 26. The actuals shown are based on low-level sensor indications. Touchdown is shown to have occurred 40 to 50 seconds prior to propellant depletion, only 20 to 30 seconds from the land-or-abort decision point and approximately 52 to 62 seconds longer than predicted for an automatic landing. The flying time below 500 feet was approximately 2 minutes 28 seconds.

Figure 25. - Apollo 11 altitude as a function of altitude rate for the landing phase.

Figure 26. - Apollo 11 landing-phase events.

The Apollo 11 landing was an unqualified success. The descent was nominal until the beginning of the landing phase (an altitude of approximately 410 feet), when the commander was required to avoid a large area of rough terrain with manual
control. The size of the area was such that the crew should have been able to detect and avoid it efficiently during the approach phase, if sufficient attention could have been devoted to visual assessment. Adequate visual assessment was not possible during the Apollo 11 descent because of the guidance-program alarms. The problem causing these alarms has been corrected.

Apollo 11 Ascent

A summary of ascent is given in table V and is compared with premission estimates. This comparison indicates that no anomalies occurred during the ascent burn and that the insertion objectives were closely satisfied. The 3-second difference in

<table>
<thead>
<tr>
<th>TABLE V. - APOLLO 11 ASCENT SUMMARY</th>
</tr>
</thead>
</table>

(a) Events

<table>
<thead>
<tr>
<th>Event</th>
<th>TFI, min:sec</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Premission</td>
</tr>
<tr>
<td>End of vertical rise</td>
<td>0:10</td>
</tr>
<tr>
<td>Insertion</td>
<td>7:18</td>
</tr>
<tr>
<td>Beginning of velocity</td>
<td>--</td>
</tr>
<tr>
<td>residual trim</td>
<td>--</td>
</tr>
<tr>
<td>Residual trim complete</td>
<td>--</td>
</tr>
</tbody>
</table>

(b) Insertion conditions

<table>
<thead>
<tr>
<th>Measurement type</th>
<th>Altitude, ft</th>
<th>Radial velocity, fps</th>
<th>Down-range velocity, fps</th>
</tr>
</thead>
<tbody>
<tr>
<td>Premission</td>
<td>60 085</td>
<td>32</td>
<td>5535.6</td>
</tr>
<tr>
<td>PGNCS (real time)</td>
<td>60 602</td>
<td>33</td>
<td>5537.0</td>
</tr>
<tr>
<td>AGS (real time)</td>
<td>60 019</td>
<td>30</td>
<td>5537.9</td>
</tr>
<tr>
<td>MSFN (real time)</td>
<td>61 249</td>
<td>35</td>
<td>5540.7</td>
</tr>
<tr>
<td>Postflight</td>
<td>60 300</td>
<td>32</td>
<td>5537.0</td>
</tr>
</tbody>
</table>
TABLE V. - APOLLO 11 ASCENT SUMMARY - Concluded

(c) Parameters

Ascent targets
Radial velocity, fps 32.2
Down-range velocity, fps 5534.9
Cross range to be steered out, n. mi. 1.7
Insertion altitude, ft 60 000

PGNCS velocity residuals (LM body coordinates)
V_{gx}, fps .. -2.1
V_{gy}, fps .. -0.1
V_{gz}, fps .. 1.8

Resulting orbit after residual trim
Apolune altitude, n. mi. 47.3
Perilune altitude, n. mi. 9.5

burn time is attributed to a slightly higher actual thrust-to-weight ratio than predicted. No means are available to determine whether the difference resulted from high thrust or less weight. Usable APS propellant at cut-off was estimated to be approximately 250 pounds.

APOLLO 12 MISSION

Apollo 12 Planning

The Apollo 12 mission had the same major mission objective as the Apollo 11 mission; namely, to land men on the moon and return them safely to earth. In addition, a secondary objective for the Apollo 12 flight was to demonstrate pinpoint landing capability, which is required for future scientific missions, by landing within a 1-kilometer (0.54 nautical mile) radius of the target, near the Surveyor III spacecraft located at Apollo site 7 (latitude 3°.0° S, longitude 23.4° W). Basically, the planning philosophy for the Apollo 12 descent and ascent remained the same as the philosophy for the Apollo 11 mission. However, because the Apollo 11 LM landed approximately 3 nautical miles off target and consumed more propellant for terrain avoidance than anticipated, several minor changes were considered for the Apollo 12 descent. These changes were concerned with alleviating ΔV and propellant requirements and with more efficiently correcting position errors during the descent.

Two methods for alleviating propellant requirements were proposed. The first method was to perform DOI with the CSM before undocking the LM, perhaps even combining DOI with the lunar orbit insertion maneuver. By using this method, the LM ΔV and propellant requirements can be reduced by 75 fps and 190 pounds of propellant, which increases hover or translation time available in the landing phase by 20 seconds. The planning time for analysis and the crew-activity time line did not permit incorporation of this method for the Apollo 12 mission. However, the method was determined to
be feasible and was planned for use on the Apollo 13 and subsequent missions. The second method was to modulate the DPS thrust 10 to 12 times between FTP (maximum) and 57 percent (upper throttle region) to correct thrust dispersions. In using this method, the 2-minute throttle recovery region prior to high gate could be eliminated, resulting in about the same propellant savings as with the first method. This modulation required a change in the basic guidance logic, considerable system dispersion analysis, and DPS testing over this duty cycle before incorporating the logic. The second method also could not be incorporated in the Apollo 12 planning, but is being considered for future missions. Thus, the Apollo 12 ΔV and propellant requirements for descent remained the same as the Apollo 11 ΔV and propellant requirements.

Two methods for providing more efficiency in position correction during descent were proposed. The first method was to take advantage of the detection of down-range position error by the powered-flight processor during the braking phase. (See the section entitled "The PGNCS Monitoring.") Analysis showed that large updates in down-range or up-range target position could be made for small changes in ΔV and throttle recovery time (fig. 27). In addition, dispersion analysis using this update indicated that down-range dispersions would be reduced to approximately 11.3 nautical miles, as shown in figure 28. A minor change to the guidance logic to allow the crew to enter manually (through the DSKY) updates to the landing-site coordinates sent from the ground was required. The guidance change was made, and this proposed technique was approved for use on the Apollo 12 mission. The second method proposed was to change the guidance targeting for the approach and landing phases (P64 guidance) to enhance redesignation (LPD) and manual maneuvering capabilities. Use of these capabilities would be required to reduce the 3σ dispersions shown in figure 28 to a 1-kilometer radius for pinpoint landing. The results of a limited study for varying horizontal and vertical velocities at low gate (500 feet) with vertical descent targeted to a 100-foot altitude are shown in figure 29. It was determined that by increasing forward velocity at 500 feet from 60 to 80 fps, significant gains in redesignation capability (fig. 30) were achieved while altitude rate was maintained at 16 fps. In addition, this trajectory resulted in a slowly changing or more constant LPD time history during approach, as shown in figure 31. Therefore, this proposal was also accepted for the Apollo 12 operational-trajectory planning.

![Figure 27. - Landing site update capability during braking phase.](image)

(a) Throttle margin time. (b) Change in characteristic velocity.
In summary, the Apollo 12 descent and ascent used the same design as the Apollo 11 descent and ascent. The descent approach and landing-phase trajectory were speeded up slightly. The capability to update the landing site position during the braking phase was added. Finally, reduction in the descent ΔV and propellant requirements for missions subsequent to the Apollo 12 flight was planned.
The second manned lunar landing occurred on November 19, 1969, at Apollo site 7 in the Ocean of Storms, adjacent to the crater containing Surveyor III. Throughout powered descent, all systems performed excellently, with not even a program alarm. The PDI occurred 5 nautical miles north of the nominal groundtrack. This cross-range distance was known to the guidance and was steered out during the braking phase for a minimal \(\Delta V \) of approximately 10 fps. Also, at PDI, an up-range position error of 4200 feet was determined by the powered-flight processor. Thus, the landing-site position was updated (moved down range) by that amount early in the braking phase. This correction resulted in a 5-second-early throttle recovery and a slight \(\Delta V \) penalty (fig. 27). A down-range redesignation of 4200 feet could have been performed in the approach phase, if necessary — however, not as cheaply as the braking-phase update (figs. 27 and 30).

During the approach phase, the commander was able to determine that the guidance was very close (approximately 600 feet, which is the diameter of Surveyor Crater) to being on target, as illustrated in figure 32. Figure 32(a) shows the view from the right-hand window (the lunar module pilot's window) taken in real time by the onboard 16-millimeter camera 20 seconds after high gate. Based on this view and with trajectory reconstruction, the view as seen by the commander from the left window was determined from an analytical computer program, as shown in figure 32(b). The commander performed several redesignations late in the approach, as indicated in figure 33, to land in a more acceptable area. A plot of the guidance-targeted landing site as a result of these redesignations is shown in figure 34, along with a groundtrack of the landing-phase trajectory under P66 (manual) control. The commander switched to manual control to land closer to the Surveyor III, maneuvering the LM some 420 feet closer (short) than would have

![Redesignation Table](image)

(a) Right-hand window view taken with onboard 16-millimeter camera (camera tilted 41° to the horizon).

(b) Lunar module altitude above the landing site as a function of surface distance to the landing site.

Figure 32. - Apollo 12 window views 30 seconds after high gate (altitude, 4000 feet).
occurred by continuation of automatic guidance control. The altitude-range profile under manual control is illustrated in figure 35. The time of flight in the landing phase below 500 feet was 2 minutes (1 minute 50 seconds under manual control). This is considered nominal for a manual landing. Total powered descent took 12 minutes 26 seconds. Premission automatic nominal descent was 11 minutes 20 seconds.

(a) Landing point designator angle as a function of surface distance to the landing site.

(b) Computer reconstruction of commander's view.

Figure 33. - Apollo 12 approach phase.

Figure 34. - Apollo 12 groundtrack for the landing phase.
Touchdown occurred 35 seconds after low-level light "on," or approximately 60 seconds before the land-or-abort decision point. This margin is almost twice the Apollo 11 margin. However, postflight analysis has shown that the low-level sensor was actuated early (20 seconds on the Apollo 11 mission, 25 seconds on the Apollo 12 mission) because of propellant sloshing. This problem is expected to be solved for future missions by (1) increasing the quantity measurement samples on each propellant tank from 1 to 100 samples per second to define the dynamic effects and (2) installing baffles to decrease slosh.

The Apollo 12 landing stirred up more dust than the Apollo 11 landing during final touchdown, which resulted in considerable loss of visibility. (See notes on figure 35.) This visibility problem has led to a modification to the landing-guidance program (P66) for future missions. In addition to the current manual control mode, the capability has been added for the commander to be able to select automatic horizontal velocity nulling. That is, should visual cues be lost near or during vertical descent, the automatic mode could be selected to null any horizontal velocity components while the commander maintains control of vertical descent rate to touchdown.

In summary, the Apollo 12 mission, the second highly successful manned lunar landing, achieved the first pinpoint landing. The achievement of pinpoint landing greatly enhanced the possibilities for lunar exploration into the rougher mountainous areas of particular interest to scientists.

MISSION-PLANNING EXPERIENCE

Mission planning entails the development of trajectories and associated software logic for accomplishing defined objectives within the capabilities and constraints of the spacecraft systems and the crew, when operating in a specified environment. Thus, the mission planners' task is primarily one of integration to achieve the proper balance among performance, constraints, and objectives. The soundness of the plan is based on the ability to achieve mission success with at least 99.7-percent (3σ) probability while maintaining crew safety.

As stated previously, the basic mission-design philosophy for LM descent and ascent remained unchanged throughout the 7 years of planning. However, as LM systems changed from design concept to reality and as operation constraints were modified, it became necessary, particularly for the descent, to modify or reshape the trajectory and software logic accordingly.
In the preceding sections, it has been shown that the final premission plan was sound, leading to two highly successful manned lunar landings. The purpose of the following sections is to provide some insight into typical problems (not intended to be all inclusive) encountered by the mission planners and the solutions that evolved into the final operation plan. Because most of these problems involved changing system capabilities and constraints, the discussion of typical problems is divided into system design specifications, system performance definitions, system interfaces, and mission-planning flexibility.

System Design Specifications

The DPS will be used as an example of problems associated with design specifications, because it presented many problems to the mission planners. The original design requirements specified a throttle range of 10 500 to 1050 pounds, a range beyond the state of the art at that time. This range of thrusting provided three capabilities. First, the maximum thrust level provided near-optimum propellant efficiency with an initial thrust-to-weight ratio T/W_0 of 0.42 (ref. 3). Second, the minimum thrust provided translation and hover capability in a vertical attitude near the lunar surface. Third, the continuous throttle capability provided the PGNCS the means for achieving the desired final position (altitude, cross range, and down range) and velocity vectors. (See the section entitled "Guidance Logic.")

Difficulties encountered in the development of the DPS resulted in achieving a nominal maximum thrust of only 9800 pounds and not achieving the full design range of throttle capability. The reduced maximum thrust coupled with a weight growth from 25 000 to approximately 34 000 pounds yielded a T/W_0 of only 0.29. These changes resulted in a loss of efficiency amounting to 160-fps ΔV increase or 600 pounds of additional propellant required. However, only 30 percent of this penalty is attributed to the reduction in maximum thrust; the remainder is charged to the weight growth.

More serious, however, was the reduced throttle capability. The throttle capability (as defined in the section entitled "System Descriptions") was reduced to a range of 10 to 60 percent (100 percent being defined as 10 500 pounds) with a fixed throttle position at maximum thrust. The propulsion-system designers were satisfied because this capability solved the hardware design problems and still achieved the nominal-design mission duty cycle. However, to the mission planners, the reduced throttle capability was a severe constraint which meant that the means to satisfy PGNCS commands for achieving targeted conditions were not available during FTP operation. Because flight safety could be impaired if desired altitude and velocity targets were not achieved, consideration was given to relaxing the down-range target constraint. However, the down-range dispersions from thrust errors alone would be ± 9 nautical miles, which was considered unacceptable even for mare-type (smooth) landing areas. Modulation of the down-range thrust vector by out-of-plane thrusting (roll about body Z-axis) similar to lift vector modulation for atmospheric entry could theoretically provide range control. However, this maneuvering was incompatible with LR operation and stable conditions for crew monitoring. Thus, it was not given further consideration.

Attempts to regain some throttle control by (1) shallow throttling and (2) throttle pulsing were investigated. Shallow throttling refers to a small (± 3 percent) throttle capability about FTP. Throttle pulsing refers to modulating the thrust several times
between FTP and 57 percent (upper throttle region). The cost estimates by the propulsion-system designers for development and test were too high and confidence of success too low to warrant use of either of these proposals. However, the second technique was reviewed and considered for later Apollo missions, as discussed in the section entitled "Apollo 12 Planning."

The solution finally adopted was to target the braking phase inefficiently, such that the guidance would command thrust levels to drop within the throttle capability (less than 57 percent) before high gate. In this manner, the desired target conditions could be achieved within the throttling capability of the DPS. Nominally, 2 minutes of inefficient throttling before high gate was required to accommodate dispersions in thrust and navigation. This resulted in a ΔV penalty of approximately 100 fps or approximately 380 pounds of additional required propellant. This solution also resulted in what at first seemed to be a contradiction. A high FTP thrust performing engine (higher than nominal) was less efficient, and a low thrust engine was more efficient than nominal. This was because higher thrust resulted in early throttle recovery with a longer inefficient throttle region, and low thrust resulted in late throttle recovery with a shorter inefficient throttle region. (See the section entitled "The DPS and PGNCS Interface."

Definition of System Performances

Many of the mission planners' problems were associated with a proper definition of system operation performance capabilities and constraints. The DPS, LR, and PGNCS are used as typical examples of this type of problem.

To meet the mission objective of landing on the moon with 99.7-percent probability of success, the guidance system had to be able to correct for off-nominal initial-condition errors, for system errors during the descent, and for uncertainties of the lunar terrain on approach to the landing area. Thus, a variety of DPS duty cycles could be commanded in addition to the nominal to achieve this objective. The mission planners, then, needed a definition of thrust and specific impulse as a function of commanded throttle to perform trajectory analyses. Because the DPS was an ablative-cooled engine, the amount of time spent at a given throttle setting affected throat erosion and, consequently, affected subsequent performance at given throttle settings. Therefore, to provide the mission planners with performance data, the system designers needed to know the specific duty cycle for each trajectory. Thus, the iteration began. This iteration resulted in much confusion and many investigative false starts before the mission planners and system designers realized the extent to which the inputs of one affected the other. The problem was then solved by including the system designers' sophisticated DPS model (temperature, pressure relations for determining appropriate thrust, and specific impulse) in the mission planners' simulations for trajectory generation. This simulation included closed-loop guidance and other pertinent systems models. This allowed the system designers to incorporate the latest test results rapidly into the mathematical model of the DPS. In this manner, a true and updated knowledge of the best trajectory and system-design requirements was obtained.
The LR problems are analogous to the DPS problems. Again, the mission planners' problems involved a proper definition of the operational performance and constraints. The mission planners needed to know the answers to such questions as the following.

1. At what maximum altitude was the LR expected to operate for updating the PGNCS estimate of altitude and velocity?

2. What was the accuracy of the updating?

3. What was the best orientation for positioning the LR beam?

4. Where would loss of signal occur because of zero Doppler shift? (The velocity is normal to the beam; therefore, no signal return occurs.)

5. How close to the lunar surface would the LR operate effectively?

To deal with these questions, the system designers needed to know several answers themselves.

1. What trajectory (acceleration, velocity, and position profile) was to be flown?

2. What were the attitude and attitude-rate profiles?

3. What was the terrain profile that the LR was to track?

4. What were the lunar-surface reflectivity characteristics?

Thus, the iteration began. The LR updates changed the PGNCS estimate of the trajectory and caused the guidance to change commands and fly a trajectory other than the nominal. The new commands and trajectory changed orientation of the LR beams, which resulted in different LR performance. Again, both the mission planners and the system designers were underestimating the extent to which the inputs of one affected the other. That is, the system designers had been tying the design to a nominal trajectory as opposed to a flight regime. The mission planners were again using an oversimplified system-performance model. The resulting confusion was not cleared until the system designers' sophisticated LR model was included in the mission planners' simulations for trajectory generation, as was done with the DPS model. The LR model included acquisition and performance determined from calculations of signal-to-noise ratio for each beam as a function of the trajectory conditions (beam incidence angle, range, and velocity) and electronic characteristics (bandwidth, preamplifier slope, tracker gains, et cetera).

Even with the sophisticated modeling of system performances, the outputs were still no better than the inputs. Unfortunately, the inputs provided by the system designers were often overly conservative; that is, the performance inputs were gross underestimates of the actual system performances. For example, the system analysis for providing inputs to the DPS model was initially conducted on a worst-case basis. That is, all error sources were considered unrealistically to be linearly additive. This led to large uncertainties in performance and, consequently, required large allocations of propellant to be held in reserve, which resulted in gross inefficiency. If this type of
analysis had been used on all systems (and it was tried on many), the flight would, literally, never have gotten off the ground. With the integrated system models in the trajectory simulations, the mission planners and system designers were able to conduct appropriate statistical analyses that deleted the unnecessary overconservatism and still provided 99.7-percent mission-success planning.

Another example of overconservatism involved altitude navigation before PDI and during the braking phase of powered descent. The preliminary estimate of altitude uncertainty at PDI was 7800 feet (3σ). Initial estimate for beginning LR altitude updating was 20 000 feet (nominal). By the time the LM reached this altitude, the 3σ altitude uncertainty had grown to approximately 11 000 feet. From figure 18, it can be seen that the maximum allowable Δh (altitude difference between PGNCS and LR) could be exceeded for the nominal (20 000 feet) initiation of LR altitude updating with better than 3σ PGNCS performance. That is, 99.7-percent mission-success probability could not be assured. Thus, the mission planners were faced with either changing the mission plan in some manner or seeking improvement in system performances from the system designers. Because changing the mission plan could impact all elements involved (system operations, crew training, flight control, et cetera), it was first decided to investigate system performances. The systems of concern were the MSFN navigation (PGNCS initialized with the MSFN), PGNCS errors (primarily accelerometer bias), and LR performance. However, no recognized improvement was to be found. The MSFN uncertainties were involved in the newly discovered and little understood mascon theories. The PGNCS hardware was tested and found to be considerably better than design specifications; however, only the specification performance showed up in the official data book. Finally, although the mathematical model of the LR (which was supplied by the system designers) indicated that LR altitude updating should be expected nominally at 35 600 feet instead of 20 000 feet, the system designers' official data still did not reflect this capability. It was not until the Apollo 10 flight (the dress rehearsal for the lunar landing) demonstrated the LR operational capability to be above 60 000 feet, as predicted by the mathematical model (LR beams pointed nearer vertical than in descent, thus the increase in performance altitude), that the system designers agreed to upgrade the LR performance estimates. Also, the Apollo 8 and Apollo 10 missions provided increased understanding of lunar-orbit navigation, which resulted in an improvement by a factor of 2 in altitude uncertainty for PDI. (See PDI dispersions in figure 18.) It was not until after the Apollo 11 mission that the PGNCS performance estimates were upgraded, again primarily accelerometer bias, by a factor of 2.

Thus, with the recognized improvement in LR capability and orbit navigation, the altitude navigation problem was finally solved, but not until after the Apollo 10 mission. In the meantime, considerable manpower was being devoted to crew-monitoring techniques for trying to estimate altitude. These included (1) RR tracking of the CSM before PDI and (2) tracking surface features with window markings and a stopwatch. These techniques had gross accuracies of approximately 10 000 feet; however, because of a lack of confidence in orbit navigation and LR capability at that time, the RR tracking technique was planned for and used on the Apollo 11 flight. Also, a face-down attitude was planned for and used (after much controversy) during the first portion of the descent braking phase. In this attitude, the crew planned to monitor surface features
visually for gross down-track and cross-track errors as well as altitude errors. There were two major controversies.

1. The effect of the face-down attitude on S-band antenna pointing limits for communications with the earth

2. The length of time the face-down attitude could be maintained without interfering with LR altitude updating

First, the effect on S-band coverage was considered. It was determined that communications would be blocked in a face-down attitude. Thus, the choices were as follows.

1. Do not allow the face-down attitude so that ground communications can be maintained.

2. Allow face-down attitude and give up communications.

3. Allow face-down attitude and modify the S-band antenna limits.

Because of the operational uncertainties of the systems involved (LR, MSFN, and PGNCS), it was decided that the attitude flexibility be provided to the crew for surface monitoring and that ground communications be maintained to take advantage of earth-based monitoring capabilities. Thus, the face-down attitude was allowed after the associated penalties in hardware cost, manpower, testing, and schedule impacts for modifying the S-band antenna were accepted.

Second, the effect of the face-down attitude on LR altitude updating was considered. It was determined that the crew could yaw face down or face up at their discretion; however, the guidance computer would command (X-axis override) face-up attitude at an indicated altitude of 30,000 feet if the crew had not already done so. This provided the crew with nearly 6 minutes for surface monitoring and still allowed sufficient margin for the LR update to correct altitude dispersions. On the Apollo 11 mission, the crew completed surface monitoring and began yawing at approximately 4 minutes into the descent. The LR acquired lock-on to the lunar surface during this rotation at an altitude of 37,000 feet. With this added confidence in LR, PGNCS, and MSFN capabilities, the RR tracking of the CSM and surface features was not deemed necessary for the Apollo 12 flight. This change allowed a face-up attitude throughout descent, simplifying crew procedures, simplifying S-band antenna pointing, and maximizing LR use. Before this change, because of overly conservative estimates or lack of confidence in system test-development programs, an extensive expenditure of manpower and money was made, which in some cases was unnecessary or at least overemphasized.

The preceding problem also had considerable influence on mission rules; in particular, the rule calling for an abort at a PGNCS-estimated altitude of 10,000 feet if LR altitude updating had not been established. (See the section entitled "The LR and PGNCS Interface.") It was desirable to be able to proceed to high gate without LR to enhance mission success, because manual control of the descent with out-the-window visibility of the surface was possible from that point. However, with the estimates of systems performance, it was not safe (on a 99.7-percent basis) to do so. As estimates of system performances change, this mission rule is subject to change. Thus, mission rules
are another pertinent reason for having the proper definition of system performances. Without this definition, mission rules could be quite arbitrary, because they would be based on an unreal situation.

System Interfaces

Perhaps the most difficult problems facing both the mission planners and the system designers are those associated with interfacing one system with another. The difficulty arises from trying to achieve and maintain compatibility between output from one system, which is input to the other. Maintaining this compatibility is often lost. As system development evolves, a necessary modification in one system may result in a subtle change in output or input format (hardware or software). If this change is not properly analyzed and tested, it usually will cause problems in some phase of the process. Certainly, the responsibility rests upon the system designers to define all such changes clearly. However, it is also the responsibility of the mission planners, as integrators of system capabilities and constraints for accomplishing mission requirements, to understand the ramifications of the change and to communicate these effects to program management for final resolution of the change.

Many interface problems had to be resolved in planning LM descent and ascent. Most of these problems concerned interfaces between the guidance computer and each of the other systems. This was to be expected because the guidance computer is the real-time integrator of all other (as well as its own) system performances and constraints to achieve the desired target objectives. In the real-time situation, no system interface problems occurred during ascent, and only one interface problem occurred during descent. The descent problem concerned the interface between the guidance computer and the RR and has been discussed in the section entitled "The PGNCS Monitoring." Although this interface problem went undetected during system design and premission simulations, the possibility of this type of problem had been anticipated (computer restart protection). Thus, when the problem occurred in real time, its effect was minimized and continuation of the mission was possible.

Other interface problems that could have been encountered in real time, but were not, have also been discussed in the section entitled "Real-Time Analysis." These problems were the subject of the real-time monitoring limits and the rules for aborting the mission. Next, some additional problems encountered in premission planning of the LM descent are discussed to illustrate further the difficulties of system interfaces.

A typical example was mission design for the DOI maneuver. It was decided to reduce the lunar parking-orbit altitude from 100 nautical miles (original design) to 80 nautical miles (later reduced to 60 nautical miles) to reduce propellant requirements that allowed increases in the system and spacecraft dry weights. The problem was as follows. The ΔV requirement for DOI was reduced; thus, burn time on DPS at maximum thrust (FTP) was reduced. Unfortunately, it was reduced to the point where the PGNCS guidance did not have sufficient time to command an accurate cut-off, which resulted in dispersions too large for continuation of the mission. Obviously, the use of a lower thrust level, which the DPS was capable of, would result in a longer burn time and would solve the problem. Because the DPS was always ignited at 10-percent thrust for trimming the gimbals, consideration was given to performing the entire DOI maneuver at 10-percent thrust. Unfortunately, the DPS could not perform this type of burn
and still assure temperature and pressure (supercritical helium pressure-feed system) conditions necessary to perform PDI 1 hour later. After many iterations, much cost, and extensive testing, it was determined that the solution was to throttle the DPS manually, after trim, to 40-percent throttle. Auto-throttle logic would unduly complicate the software logic. The PGNCS and DPS interface for this maneuver was once again compatible.

An example of the interface problems between the PGNCS and the LR was side-lobe lockup. The LR design was such that the beams had a main lobe (strongest pattern of signal return) and side lobes (weaker patterns of signal return). This could present a problem at low altitudes (below high gate). In the event of LR signal dropout (zero Doppler shift, antenna switching), it was possible for reacquisition to occur on the side lobe rather than on the main lobe. These situations would result in erroneous updates to the PGNCS. Rather than change the hardware, it was determined that a satisfactory and inexpensive solution would be to modify the guidance software logic to include a reasonability test on the LR data before they were incorporated. This solution has worked; however, it has further complicated and constrained the PGNCS and LR interface and continues to be analyzed. This is one of the many examples where software logic has been added to solve hardware problems. This type of solution should be exercised judiciously because of the additional complexity and the limits of the guidance computer: fixed and erasable memory, timing requirements, and logic changes.

Mission-Planning Flexibility

Many problems were encountered because original system designs were molded too closely to a nominal trajectory. Therefore, it is imperative that the mission planners define a flight regime for the system designers, as opposed to only a reference or nominal profile. Just as the system designers should not be arbitrarily conservative in defining performance, neither should the mission planners do so in defining the flight regime. This would place unnecessary requirements on system designs and result in either degrading the performance where it is really needed or increasing the development and test costs, or both. The mission planners must define the flight regime which optimizes the balance between mission objectives (including crew safety) and system capabilities. This regime will change when either objectives or capabilities change. Thus, the mission planners' design must maintain the capability or flexibility to accommodate reasonable changes in both. This capability must exist not only during system development but also after the systems become operational.

For example, in the initial development of the guidance-computer software, the descent targets were allocated to fixed (hardwired) memory. Erasable memory was and still is quite limited and reserved primarily for system performance coefficients that might change because of final test results reported after computer rope manufacture. Position of the landing site was the only descent-trajectory-dependent parameter in erasable load. This completely destroyed the mission planners' capability for operational flexibility after manufacture of computer ropes (which can occur several months before launch). After it was pointed out several times that system capabilities as well as mission objectives would be enhanced by targeting changes based on latest system test results, the targets were placed in erasable memory. Without this capability, the efficiency and adequacy of mission planning would have been severely hampered.
Both the mission planners and the system designers must be alert to system-interface problems, which often go unnoticed for long periods because of the interfacing of technical disciplines. After an awareness has been established, generally, the problem is readily solved.
One recommendation for changing the design concept for future landing programs (beyond Apollo) is offered. The navigation concept based on surface tracking along the approach can severely limit the flexibility of landing-site selection. This concept demands the generation of considerable data from previous missions or programs and can be the constraining factor in deleting some scientifically desirable sites. A navigation technique based on direct ranging to the landing site during approach provides greater flexibility for site selection.

CONCLUDING REMARKS

The premission planning for the lunar descent and ascent phases of the Apollo 11 mission has been presented and compared with actual flight results. The Apollo 11 lunar module descent and ascent compared excellently with premission planning. An initial navigation error caused the landing to be approximately 3 nautical miles down range from the target, but the landing was still within the premission mapped area. The original three-phase descent design and contingency planning afforded the crew the opportunity, late in the descent, to maneuver out of an area of rough terrain to a successful touchdown.

As a result of the Apollo 11 postflight analysis, only two minor changes were incorporated in descent planning for the Apollo 12 flight. The first change was the provision for a navigation update of the landing site early in the braking phase to enhance the pinpoint landing capability. The second change was a slight modification to the descent targeting to enhance the landing-site redesignation and manual translation capability in the approach and landing phases.

The Apollo 12 lunar module descent and ascent data also correlated well with premission planning. During lunar module descent, the landing-site navigation update and redesignation capabilities were used, along with manual maneuvering, to achieve the first pinpoint lunar landing. The landing, within 600 feet of the Surveyor III spacecraft, has provided confidence for premission planning of future manned lunar-exploration missions.

From the Apollo experience, it has been shown that many mission-planning problems were encountered as a result of changing system capabilities and constraints. These problems were solved in the Apollo Program and can be avoided in future programs by (1) proper understanding by the mission planners and the system designers of all objectives and requirements; (2) proper definition and modeling of system performances; (3) awareness and understanding of system interfaces; (4) definition of a design flight regime, not just a nominal trajectory; (5) maintenance of a capability for mission-planning flexibility; and (6) avoidance of false conservatism in defining system performances and flight regimes.
Only one recommendation for changing the design concept for future lunar-landing programs (beyond Apollo) is offered. It is recommended that a navigation technique based on direct ranging to the landing site be investigated to replace surface tracking along the approach. This would provide greater flexibility for site selection in areas of rough-approach terrain.

Manned Spacecraft Center
National Aeronautics and Space Administration
Houston, Texas, August 25, 1971
076-00-00-00-72
REFERENCES

